Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 81.287
1.
J Nanobiotechnology ; 22(1): 221, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724958

Intra-articular drugs used to treat osteoarthritis (OA) often suffer from poor pharmacokinetics and stability. Nano-platforms as drug delivery systems for drug delivery are promising for OA therapy. In this study, we reported an M1 macrophage-targeted delivery system Bai@FA-UIO-66-NH2 based on folic acid (FA) -modified metal-organic framework (MOF) loaded with baicalin (Bai) as antioxidant agent for OA therapy. With outstanding biocompatibility and high drug loading efficiency, Bai@FA-UIO-66-NH2 could be specifically uptaken by LPS-induced macrophages to serve as a potent ROS scavenger, gradually releasing Bai at the subcellular level to reduce ROS production, modulate macrophage polarization to M2, leading to alleviation of synovial inflammation in OA joints. The synergistic effect of Bai@FA-UIO-66-NH2 on macrophage polarization and ROS scavenging significantly improved the therapeutic efficacy of OA, which may provide a new insight into the design of OA precision therapy.


Flavonoids , Macrophages , Metal-Organic Frameworks , Osteoarthritis , Reactive Oxygen Species , Metal-Organic Frameworks/chemistry , Osteoarthritis/drug therapy , Animals , Flavonoids/pharmacology , Flavonoids/chemistry , Macrophages/drug effects , Macrophages/metabolism , Mice , Reactive Oxygen Species/metabolism , RAW 264.7 Cells , Antioxidants/pharmacology , Antioxidants/chemistry , Drug Delivery Systems/methods , Folic Acid/chemistry , Male , Rats , Lipopolysaccharides/pharmacology , Rats, Sprague-Dawley
2.
J Nanobiotechnology ; 22(1): 233, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725011

BACKGROUND: Dry Eye Disease (DED) is a prevalent multifactorial ocular disease characterized by a vicious cycle of inflammation, oxidative stress, and mitochondrial dysfunction on the ocular surface, all of which lead to DED deterioration and impair the patients' quality of life and social functioning. Currently, anti-inflammatory drugs have shown promising efficacy in treating DED; however, such drugs are associated with side effects. The bioavailability of ocular drugs is less than 5% owing to factors such as rapid tear turnover and the presence of the corneal barrier. This calls for investigations to overcome these challenges associated with ocular drug administration. RESULTS: A novel hierarchical action liposome nanosystem (PHP-DPS@INS) was developed in this study. In terms of delivery, PHP-DPS@INS nanoparticles (NPs) overcame the ocular surface transport barrier by adopting the strategy of "ocular surface electrostatic adhesion-lysosomal site-directed escape". In terms of therapy, PHP-DPS@INS achieved mitochondrial targeting and antioxidant effects through SS-31 peptide, and exerted an anti-inflammatory effect by loading insulin to reduce mitochondrial inflammatory metabolites. Ultimately, the synergistic action of "anti-inflammation-antioxidation-mitochondrial function restoration" breaks the vicious cycle associated with DED. The PHP-DPS@INS demonstrated remarkable cellular uptake, lysosomal escape, and mitochondrial targeting in vitro. Targeted metabolomics analysis revealed that PHP-DPS@INS effectively normalized the elevated level of mitochondrial proinflammatory metabolite fumarate in an in vitro hypertonic model of DED, thereby reducing the levels of key inflammatory factors (IL-1ß, IL-6, and TNF-α). Additionally, PHP-DPS@INS strongly inhibited reactive oxygen species (ROS) production and facilitated mitochondrial structural repair. In vivo, the PHP-DPS@INS treatment significantly enhanced the adhesion duration and corneal permeability of the ocular surface in DED mice, thereby improving insulin bioavailability. It also restored tear secretion, suppressed ocular surface damage, and reduced inflammation in DED mice. Moreover, it demonstrated favorable safety profiles both in vitro and in vivo. CONCLUSION: In summary, this study successfully developed a comprehensive DED management nanosystem that overcame the ocular surface transmission barrier and disrupted the vicious cycle that lead to dry eye pathogenesis. Additionally, it pioneered the regulation of mitochondrial metabolites as an anti-inflammatory treatment for ocular conditions, presenting a safe, efficient, and innovative therapeutic strategy for DED and other inflammatory diseases.


Dry Eye Syndromes , Inflammation , Liposomes , Mitochondria , Oxidative Stress , Dry Eye Syndromes/drug therapy , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Oxidative Stress/drug effects , Liposomes/chemistry , Inflammation/drug therapy , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cornea/metabolism , Cornea/drug effects , Drug Delivery Systems , Oligopeptides
3.
CNS Neurosci Ther ; 30(5): e14715, 2024 05.
Article En | MEDLINE | ID: mdl-38708806

Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.


Brain Neoplasms , Drug Delivery Systems , Drug Resistance, Neoplasm , Glioma , Nanoparticles , Humans , Glioma/drug therapy , Drug Resistance, Neoplasm/drug effects , Animals , Brain Neoplasms/drug therapy , Drug Delivery Systems/methods , Drug Delivery Systems/trends , Antineoplastic Agents/therapeutic use
4.
Int J Nanomedicine ; 19: 3973-3989, 2024.
Article En | MEDLINE | ID: mdl-38711615

Graphene and graphene-based materials have attracted growing interest for potential applications in medicine because of their good biocompatibility, cargo capability and possible surface functionalizations. In parallel, prototypic graphene-based devices have been developed to diagnose, imaging and track tumor growth in cancer patients. There is a growing number of reports on the use of graphene and its functionalized derivatives in the design of innovative drugs delivery systems, photothermal and photodynamic cancer therapy, and as a platform to combine multiple therapies. The aim of this review is to introduce the latest scientific achievements in the field of innovative composite graphene materials as potentially applied in cancer therapy. The "Technology and Innovation Roadmap" published in the Graphene Flagship indicates, that the first anti-cancer drugs using graphene and graphene-derived materials will have appeared on the market by 2030. However, it is necessary to broaden understanding of graphene-based material interactions with cellular metabolism and signaling at the functional level, as well as toxicity. The main aspects of further research should elucidate how treatment methods (e.g., photothermal therapy, photodynamic therapy, combination therapy) and the physicochemical properties of graphene materials influence their ability to modulate autophagy and kill cancer cells. Interestingly, recent scientific reports also prove that graphene nanocomposites modulate cancer cell death by inducing precise autophagy dysfunctions caused by lysosome damage. It turns out as well that developing photothermal oncological treatments, it should be taken into account that near-infrared-II radiation (1000-1500 nm) is a better option than NIR-I (750-1000 nm) because it can penetrate deeper into tissues due to less scattering at longer wavelengths radiation.


Antineoplastic Agents , Graphite , Neoplasms , Graphite/chemistry , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Drug Delivery Systems/methods , Photochemotherapy/methods , Autophagy/drug effects , Animals , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Nanomedicine
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731840

Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; they have a double-layered lipid membrane structure and contain rich biological information. They mediate intercellular communication and have pivotal roles in tumor development, progression, and metastasis and drug resistance. Exosomes are important cell communication mediators in the tumor microenvironment (TME). Exosomes are utilized as diagnostic and prognostic biomarkers for estimating the treatment efficacy of BC and have the potential to function as tools to enable the targeted delivery of antitumor drugs. This review introduces recent progress in research on how exosomes influence tumor development and the TME. We also present the research progress on the application of exosomes as prognostic and diagnostic biomarkers and drug delivery tools.


Biomarkers, Tumor , Breast Neoplasms , Exosomes , Tumor Microenvironment , Humans , Exosomes/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/diagnosis , Female , Biomarkers, Tumor/metabolism , Prognosis , Cell Communication , Drug Resistance, Neoplasm , Drug Delivery Systems/methods , Animals
6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731884

The rapid development of nanotechnology has offered the possibility of creating nanosystems that can be used as drug carriers. The use of such carriers offers real opportunities for the development of non-invasive drug delivery through skin structures. However, in addition to the ability to create suitable nanocarriers, it is also necessary to know how they move through dermal layers. The human skin consists of layers with different wettability characteristics, which greatly complicates how introduced substances move through it. In this work, an experimental study of the diffusion process of nanoparticles through partitions with different wettability properties was carried out. Conventional diffusion tests using Franz chambers were used for this purpose. We quantified how the wettability of the barrier, the number of layers, and their mutual configuration affect the transport of nanoparticles. Based on the results, an analysis of the phenomena taking place, depending on the wettability of the partition, was carried out. A model relationship was also proposed to determine the effective diffusion coefficient, taking into account the influence of the wettability and porosity of the barrier.


Drug Delivery Systems , Nanoparticles , Skin , Wettability , Nanoparticles/chemistry , Humans , Skin/metabolism , Drug Delivery Systems/methods , Drug Carriers/chemistry , Diffusion
7.
AAPS PharmSciTech ; 25(5): 108, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730090

Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.


Drug Carriers , Peptides , Wound Healing , Wound Healing/drug effects , Humans , Peptides/chemistry , Peptides/administration & dosage , Peptides/pharmacology , Drug Carriers/chemistry , Animals , Drug Delivery Systems/methods , Nanostructures/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Nanoparticles/chemistry , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
8.
AAPS PharmSciTech ; 25(5): 107, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730121

Treatment therapies used to manage osteoporosis are associated with severe side effects. So worldwide herbs are widely studied to develop alternative safe & effective treatments. Cissus quadrangularis (CQ) has a significant role in bone health and fracture healing. It is documented that its extracts increase osteoblastic differentiation & mineralization. Currently, Cissus quadrangularis is available in the form of tablets in the market for oral delivery. But these conventional forms are associated with poor bioavailability. There is a need for a novel drug delivery system with improving oral bioavailability. Therefore, a Cissus quadrangularis-loaded self-emulsifying drug delivery system (CQ-SEDDS) was developed which disperses rapidly in the gastrointestinal fluids, yielding nano-emulsions containing a solubilized drug. This solubilized form of the drug can be easily absorbed through lymphatic pathways and bypass the hepatic first-pass effect. The emulsification efficiency, zeta potential, globule size, in-vitro dissolution, ex-vivo, in-vivo and bone marker studies were performed to assess the absorption and permeation potential of CQ incorporated in SEDDS. CQ-SEDDS with excipients Tween 80, Cremophor RH40, Transcutol HP & α-Tocopherol acetate had shown about 76% enhancement in the bioavailability of active constituents of CQ. This study provided the pre-clinical data of CQ-SEDDS using osteoporotic rat model studies.


Biological Availability , Cissus , Drug Delivery Systems , Emulsions , Osteoporosis , Animals , Osteoporosis/drug therapy , Rats , Cissus/chemistry , Drug Delivery Systems/methods , Female , Administration, Oral , Excipients/chemistry , Solubility , Plant Extracts/pharmacokinetics , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Particle Size , Rats, Sprague-Dawley
9.
AAPS PharmSciTech ; 25(5): 109, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730125

Although inhalation therapy represents a promising drug delivery route for the treatment of respiratory diseases, the real-time evaluation of lung drug deposition remains an area yet to be fully explored. To evaluate the utility of the photo reflection method (PRM) as a real-time non-invasive monitoring of pulmonary drug delivery, the relationship between particle emission signals measured by the PRM and in vitro inhalation performance was evaluated in this study. Symbicort® Turbuhaler® was used as a model dry powder inhaler. In vitro aerodynamic particle deposition was evaluated using a twin-stage liquid impinger (TSLI). Four different inhalation patterns were defined based on the slope of increased flow rate (4.9-9.8 L/s2) and peak flow rate (30 L/min and 60 L/min). The inhalation flow rate and particle emission profile were measured using an inhalation flow meter and a PRM drug release detector, respectively. The inhalation performance was characterized by output efficiency (OE, %) and stage 2 deposition of TSLI (an index of the deagglomerating efficiency, St2, %). The OE × St2 is defined as the amount delivered to the lungs. The particle emissions generated by four different inhalation patterns were completed within 0.4 s after the start of inhalation, and were observed as a sharper and larger peak under conditions of a higher flow increase rate. These were significantly correlated between the OE or OE × St2 and the photo reflection signal (p < 0.001). The particle emission signal by PRM could be a useful non-invasive real-time monitoring tool for dry powder inhalers.


Dry Powder Inhalers , Lung , Particle Size , Dry Powder Inhalers/methods , Lung/metabolism , Administration, Inhalation , Drug Delivery Systems/methods , Aerosols , Powders , Drug Liberation
10.
Transl Vis Sci Technol ; 13(5): 5, 2024 May 01.
Article En | MEDLINE | ID: mdl-38713474

Purpose: The blood-retinal barrier (BRB) restricts the delivery of intravenous therapeutics to the retina, necessitating innovative approaches for treating retinal disorders. This study sought to explore the potential of focused ultrasound (FUS) to non-invasively deliver intravenously administered gold nanoparticles (AuNPs) across the BRB. FUS-BRB modulation can offer a novel method for targeted retinal therapy. Methods: AuNPs of different sizes and shapes were characterized, and FUS parameters were optimized to permeate the BRB without causing retinal damage in a rodent model. The delivery of 70-kDa dextran and AuNPs to the retinal ganglion cell (RGC) layer was visualized using confocal and two-photon microscopy, respectively. Histological and statistical analyses were conducted to assess the effectiveness and safety of the procedure. Results: FUS-BRB modulation resulted in the delivery of dextran and AuNPs to the RGC and inner nuclear layer. Smaller AuNPs reached the retinal layers to a greater extent than larger ones. The delivery of dextran and AuNPs across the BRB with FUS was achieved without significant retinal damage. Conclusions: This investigation provides the first evidence, to our knowledge, of FUS-mediated AuNP delivery across the BRB, establishing a foundation for a targeted and non-invasive approach to retinal treatment. The results contribute to developing promising non-invasive therapeutic strategies in ophthalmology to treat retinal diseases. Translational Relevance: Modifying the BRB with ultrasound offers a targeted and non-invasive delivery strategy of intravenous therapeutics to the retina.


Blood-Retinal Barrier , Gold , Metal Nanoparticles , Retinal Ganglion Cells , Animals , Gold/chemistry , Gold/administration & dosage , Retinal Ganglion Cells/cytology , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Dextrans/administration & dosage , Dextrans/chemistry , Drug Delivery Systems/methods , Rats , Microscopy, Confocal/methods , Male
11.
Drug Des Devel Ther ; 18: 1469-1495, 2024.
Article En | MEDLINE | ID: mdl-38707615

This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.


Biological Availability , Nanotechnology , Solubility , Humans , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/administration & dosage , Drug Delivery Systems , Nanoparticles/chemistry , Drug Carriers/chemistry , Animals
12.
AAPS PharmSciTech ; 25(5): 105, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724807

The formulation of microspheres involves a complex manufacturing process with multiple steps. Identifying the appropriate process parameters to achieve the desired quality attributes poses a significant challenge. This study aims to optimize the critical process parameters (CPPs) involved in the preparation of naltrexone microspheres using a Quality by Design (QbD) methodology. Additionally, the research aims to assess the drug release profiles of these microspheres under both in vivo and in vitro conditions. Critical process parameters (CPPs) and critical quality attributes (CQAs) were identified, and a Box-Behnken design was utilized to delineate the design space, ensuring alignment with the desired Quality Target Product Profile (QTPP). The investigated CPPs comprised polymer concentration, aqueous phase ratio to organic phase ratio, and quench volume. The microspheres were fabricated using the oil-in-water emulsion solvent extraction technique. Analysis revealed that increased polymer concentration was correlated with decreased particle size, reduced quench volume resulted in decreased burst release, and a heightened aqueous phase ratio to organic phase ratio improved drug entrapment. Upon analyzing the results, an optimal formulation was determined. In conclusion, the study conducted in vivo drug release testing on both the commercially available innovator product and the optimized test product utilizing an animal model. The integration of in vitro dissolution data with in vivo assessments presents a holistic understanding of drug release dynamics. The QbD approach-based optimization of CPPs furnishes informed guidance for the development of generic pharmaceutical formulations.


Chemistry, Pharmaceutical , Delayed-Action Preparations , Drug Delivery Systems , Drug Liberation , Microspheres , Naltrexone , Particle Size , Naltrexone/chemistry , Naltrexone/administration & dosage , Naltrexone/pharmacokinetics , Animals , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Polymers/chemistry , Emulsions/chemistry , Drug Compounding/methods , Solubility , Solvents/chemistry
13.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724836

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Adenocarcinoma , Antineoplastic Agents , Apoptosis , Drug Carriers , Epithelial-Mesenchymal Transition , Nanoparticles , Prostatic Neoplasms , Pyrans , Rats, Wistar , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Pyrans/pharmacology , Pyrans/administration & dosage , Apoptosis/drug effects , Humans , Rats , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Drug Carriers/chemistry , Nanoparticles/chemistry , Epithelial-Mesenchymal Transition/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Movement/drug effects , PC-3 Cells , Drug Delivery Systems/methods , Polyether Polyketides
14.
Int J Immunopathol Pharmacol ; 38: 3946320241249429, 2024.
Article En | MEDLINE | ID: mdl-38721971

OBJECTIVE: This study investigated the raft-forming suspension of famotidine as an anti-reflux formulation to improve the oral bioavailability of narrow absorption window drugs by enhancing gastric residence time (GRT) and preventing gastro-esophageal reflux disease (GERD). METHOD: Various combinations of raft-forming agents, such as Tragacanth gum (TG), guar gum (GG), and xanthan gum (XG), were evaluated alongside sodium alginate (SA) to develop an effective raft. Preformulation studies and preliminary screening were conducted to identify the most suitable raft-forming agent, and GG was chosen due to its mucilaginous properties. The formulation was optimized using a 32 full factorial design, with the quantities of GG and SA as independent factors and apparent viscosity and in-vitro drug release (%) as dependent factors. The in vivo floating behavior study was performed for optimized and stabilized formulation. RESULTS: Among the tested batches, F6 was selected as the optimized formulation. It exhibited desirable characteristics such as adequate raft weight for extended floating in gastric fluid, improved apparent viscosity, and a significant percentage of drug release at 12 h. A mathematical model was applied to the in-vitro data to gain insights into the drug release mechanism of the formulation. The stability of the suspension was assessed under accelerated conditions, and it demonstrated satisfactory stability. The formulation remains floating in the Rabbit stomach for more than 12 h. CONCLUSION: It concludes that the developed formulation has enhanced bioavailability in the combination of GG and SA. The floating layer of the raft prevents acid reflux, and the famotidine is retained for an extended period of time in the gastric region, preventing excess acid secretion. The developed formulations are effective for stomach ulcers and GERD, with the effect of reducing acid secretion by H2 receptor antagonists.


Drug Delivery Systems , Famotidine , Galactans , Famotidine/administration & dosage , Famotidine/pharmacokinetics , Animals , Drug Delivery Systems/methods , Drug Liberation , Alginates , Gastroesophageal Reflux/drug therapy , Gastroesophageal Reflux/metabolism , Biological Availability , Mannans/administration & dosage , Plant Gums , Viscosity , Male , Rabbits , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Polysaccharides, Bacterial , Drug Stability , Administration, Oral
15.
Sci Rep ; 14(1): 10499, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714740

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Curcumin , Drug Delivery Systems , Liposomes , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Humans , Liposomes/chemistry , Cell Line, Tumor , Drug Delivery Systems/methods , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Microbubbles , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Ultrasonic Waves , Drug Liberation , Apoptosis/drug effects
16.
Sci Rep ; 14(1): 10418, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710793

A new drug delivery system using an asymmetric polyethersulfone (PES) membrane modified by SBA-15 and glutamine-modified SBA-15 (SBA-Q) was prepared in this study by the aim of azithromycin delivery enhancement in both in vitro and ex vivo experiments. The research focused on optimizing membrane performance by adjusting critical parameters including drug concentration, membrane thickness, modifier percentage, polymer percentage, and pore maker percentage. To characterize the fabricated membranes, various techniques were employed, including scanning electron microscopy, water contact angle, and tensile strength assessments. Following optimization, membrane composition of 17% PES, 2% polyvinylpyrrolidone, 1% SBA-15, and 0.5% SBA-Q emerged as the most effective. The optimized membranes demonstrated a substantial increase in drug release (906 mg/L) compared to the unmodified membrane (440 mg/L). The unique membrane structure, with a dense top layer facilitating sustained drug release and a porous sub-layer acting as a drug reservoir, contributed to this improvement. Biocompatibility assessments, antibacterial activity analysis, blood compatibility tests, and post-diffusion tissue integrity evaluations confirmed the promising biocompatibility of the optimized membranes. Moreover, long-term performance evaluations involving ten repeated usages underscored the reusability of the optimized membrane, highlighting its potential for sustained and reliable drug delivery applications.


Anti-Bacterial Agents , Drug Delivery Systems , Membranes, Artificial , Polymers , Silicon Dioxide , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silicon Dioxide/chemistry , Polymers/chemistry , Porosity , Sulfones/chemistry , Sulfones/administration & dosage , Drug Liberation , Animals , Azithromycin/administration & dosage , Azithromycin/pharmacokinetics , Azithromycin/chemistry , Azithromycin/pharmacology , Humans
17.
J Nanobiotechnology ; 22(1): 227, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711078

BACKGROUND: Elevated interstitial fluid pressure within tumors, resulting from impaired lymphatic drainage, constitutes a critical barrier to effective drug penetration and therapeutic outcomes. RESULTS: In this study, based on the photosynthetic characteristics of algae, an active drug carrier (CP@ICG) derived from Chlorella pyrenoidosa (CP) was designed and constructed. Leveraging the hypoxia tropism and phototropism exhibited by CP, we achieved targeted transport of the carrier to tumor sites. Additionally, dual near-infrared (NIR) irradiation at the tumor site facilitated photosynthesis in CP, enabling the breakdown of excessive intratumoral interstitial fluid by generating oxygen from water decomposition. This process effectively reduced the interstitial pressure, thereby promoting enhanced perfusion of blood into the tumor, significantly improving deep-seated penetration of chemotherapeutic agents, and alleviating tumor hypoxia. CONCLUSIONS: CP@ICG demonstrated a combined effect of photothermal/photodynamic/starvation therapy, exhibiting excellent in vitro/in vivo anti-tumor efficacy and favorable biocompatibility. This work provides a scientific foundation for the application of microbial-enhanced intratumoral drug delivery and tumor therapy.


Chlorella , Drug Carriers , Photosynthesis , Animals , Mice , Cell Line, Tumor , Drug Carriers/chemistry , Humans , Combined Modality Therapy , Photochemotherapy/methods , Neoplasms/therapy , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Drug Delivery Systems/methods , Indocyanine Green/pharmacokinetics , Indocyanine Green/chemistry , Female
18.
Curr Pharm Des ; 30(6): 410-419, 2024.
Article En | MEDLINE | ID: mdl-38747045

Foam-based delivery systems contain one or more active ingredients and dispersed solid or liquid components that transform into gaseous form when the valve is actuated. Foams are an attractive and effective delivery approach for medical, cosmetic, and pharmaceutical uses. The foams-based delivery systems are gaining attention due to ease of application as they allow direct application onto the affected area of skin without using any applicator or finger, hence increasing the compliance and satisfaction of the patients. In order to develop foam-based delivery systems with desired qualities, it is vital to understand which type of material and process parameters impact the quality features of foams and which methodologies may be utilized to investigate foams. For this purpose, Quality-by-Design (QbD) approach is used. It aids in achieving quality-based development during the development process by employing the QbD concept. The critical material attributes (CMAs) and critical process parameters (CPPs) were discovered through the first risk assessment to ensure the requisite critical quality attributes (CQAs). During the initial risk assessment, the high-risk CQAs were identified, which affect the foam characteristics. In this review, the authors discussed the various CMAs, CPPs, CQAs, and risk factors associated in order to develop an ideal foam-based formulation with desired characteristics.


Drug Delivery Systems , Humans , Drug Compounding , Drug Design , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/administration & dosage , Chemistry, Pharmaceutical
19.
Methods Mol Biol ; 2808: 167-175, 2024.
Article En | MEDLINE | ID: mdl-38743370

Measles virus is one of the most contagious airborne human viruses which keeps causing outbreaks in numerous countries over the world despite the existence of an efficient vaccine. Fusion inhibitory lipopeptides were shown to inhibit viral entry into target cells, and their adequate administration into the respiratory tract may provide a novel preventive approach against airborne infections. Aerosol delivery presents the best administration route to deliver such preventive compounds to the upper and lower respiratory tract. This approach offers a conceptually new strategy to protect the population at risk against infection by respiratory viruses, including measles. It is a noninvasive needle-free approach, which may be used when antiviral protection is required, without any medical assistance. In this chapter, we describe the nebulization approach of lipopeptide compounds in nonhuman primates and the subsequent measles virus challenge.


Aerosols , Disease Models, Animal , Measles virus , Measles , Animals , Measles/prevention & control , Lipopeptides/administration & dosage , Humans , Drug Delivery Systems/methods
20.
PLoS One ; 19(5): e0298286, 2024.
Article En | MEDLINE | ID: mdl-38743674

Precision medicine endeavors to personalize treatments, considering individual variations in patient responses based on factors like genetic mutations, age, and diet. Integrating this approach dynamically, bioelectronics equipped with real-time sensing and intelligent actuation present a promising avenue. Devices such as ion pumps hold potential for precise therapeutic drug delivery, a pivotal aspect of effective precision medicine. However, implementing bioelectronic devices in precision medicine encounters formidable challenges. Variability in device performance due to fabrication inconsistencies and operational limitations, including voltage saturation, presents significant hurdles. To address this, closed-loop control with adaptive capabilities and explicit handling of saturation becomes imperative. Our research introduces an enhanced sliding mode controller capable of managing saturation, adept at satisfactory control actions amidst model uncertainties. To evaluate the controller's effectiveness, we conducted in silico experiments using an extended mathematical model of the proton pump. Subsequently, we compared the performance of our developed controller with classical Proportional Integral Derivative (PID) and machine learning (ML)-based controllers. Furthermore, in vitro experiments assessed the controller's efficacy using various reference signals for controlled Fluoxetine delivery. These experiments showcased consistent performance across diverse input signals, maintaining the current value near the reference with a relative error of less than 7% in all trials. Our findings underscore the potential of the developed controller to address challenges in bioelectronic device implementation, offering reliable precision in drug delivery strategies within the realm of precision medicine.


Precision Medicine , Humans , Precision Medicine/methods , Drug Delivery Systems/instrumentation , Feedback , Machine Learning , Computer Simulation
...